Refine Your Search

Topic

Author

Search Results

Technical Paper

Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray

1997-02-24
970871
For current passenger vehicles, multi-point injection (MPI) systems are extensively employed for gasoline engines due to ease of control and rapid response. In these systems, the pressure within the intake manifold to which the injectors are installed can fall below the saturated vapor pressure of some hydrocarbon components present in the fuel. Such a condition leads to an atomization process in which flash boiling occurs. In the present work, the atomization process under flash boiling conditions has been characterized both experimentally and theoretically. The experimental investigation has been carried out with a spray test facility consisting of a variable pressure chamber equipped with a pintle type fuel nozzle. Infrared Extinction/Scattering (IRES) is utilized to provide temporal and spatially resolved distribution of the fuel vapor concentration within the spray.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
Technical Paper

Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970352
In this paper, spray characteristics were examined to deduce the effect of ambient gas properties. Considered ambient properties were the viscosity μa and density ρa, and thus the kinematic viscosity νa. The objective of this paper is to reveal the effect of compressibility of the ambient gas to spray formation. In the experiments, the changed ranges were And a standard-sac volume nozzle of hole diameter dn =0.25 mm (ln/dn=3.0) was used at constant injection pressure difference (Δp=16.2 MPa). Also the injection pressure was varied in the range of 55 to 120 MPa with a mini-sac volume nozzle of hole diameter dn =0.20 mm (ln/dn =5.5). Several different gases were used to change the ambient viscosity at a room temperature. From the experiments, it is obtained that larger the viscosity, the more the spray spreads in the radial direction, thus the spray angle gets larger and the tip penetration became shorter.
Technical Paper

CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine

1997-02-24
970319
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved fuel is expected to undergo flash boiling or gas separation when being injected into the combustion chamber and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Also the internal EGR effect caused by CO2 injected with the fuel is expected to NO formation. In order to assess this concept, combustion experiments were carried out using a rapid compression and expansion machine. Thus, flame characteristics and heat release rate were analyzed for the combustion process of diesel fuel and CO2 mixed fuel. And, it is revealed that the diesel fuel-liquefied CO2 mixed fuel can successfully reduce NO emission in a diesel combustion system.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Modelling of Atomization Process in Flash Boiling Spray

1994-10-01
941925
This paper presents the analysis of atomization and vaporization processes in a flash boiling spray based on experimental results obtained from injection systems in the suction manifold of a gasoline engine. Two kinds of liquid fuel, n-Pentane and n-Hexane, were injected into quiescent atmosphere at room-temperature and low-pressure through a pintle type injector with electronic control. The spray characteristics of both fuels below various atmospheric pressures were investigated in detail by taking photography. Then, in the region of flash boiling, where the back pressure was below the saturated vapor pressure of fuel, the bubble nucleation process due to the flash boiling was modelled by both the measurement results of bubble and the nucleation rate equation using the degree of superheat of the liquid fuel.
Technical Paper

Combustion in a Small DI Diesel Engine at Starting

1992-02-01
920697
It is unavoidable that a DI diesel engine exhausts a blue and white smoke at starting, especially in the cold atmosphere. In the experiments presented here, a small DI diesel engine started under the conditions of coolant and suction air whose minimum temperatures were 255 K and 268 K, respectively. The flame was photographed by high-speed photography, the temperature of flame and the soot concentration were measured by two-color method, and CO2 concentration was detected by luminous method. The engine cannot be started over several cycles when the coolant temperature is 255 K and suction air temperature is 268 K. As the temperature of coolant and suction air are decreasing, the maxima of the cylinder pressure, the flame temperature, the soot concentration and CO2 concentration are decreasing. Luminous small dots or small lumps of flame become scattered in the piston cavity.
Technical Paper

Characteristics of Combustion in an IDI Diesel Engine with a Swirl Chamber Made of Ceramics

1992-02-01
920696
There is a concept that the increase in the temperature of charge in a combustion chamber and the shield of heat transferred through a chamber wall can facilitate the oxidation of soot and reduce the discharge of soot from the engine. In the experiments presented here in, an IDI diesel engine was used to inspect the concept. The engine was installed a bigger sized cylindrical swirl chamber which was equipped with two flat quarts windows, in order to observe the combustion phenomena and to apply the optical measurement. The experiments were carried out using two types of divided chambers, that is, the swirl chamber made of ceramics and that made of steel, to examine the the effects mentioned above.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector

1992-02-01
920382
This paper presents an atomization mechanism of a spray injected into the low-pressure field, as the subject of injection system in a suction manifold of gasoline engine. Pure liquid fuel, which is n-Pentane or n-Hexane is injected into quiescent gaseous atmosphere at room-temperature and low- pressure through pintle type electronic control injector. Fuel sprays are observed by taking photographs for variation of the back pressure and the changes in spray characteristics with the back pressure below atmospheric pressure are examined in detail. In particular, in the case of the back pressure below the saturated vapor pressure of fuel, the atomization mechanism is discussed from a viewpoint of flash boiling phenomena, those are bubble growth rate and so on.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Distribution of Fuel Droplets, Hydrocarbon and Soot in Diesel Combustion Chamber

1983-02-01
830456
Distribution of injected fuel droplets, total hydrocarbon concentration and soot concentration in the combustion chamber of a diesel engine with a swirl chamber have been measured microscopically with regard to the time and the space by means of optical method. As a result of this study, effect of the swirl flow on atomized droplet distribution, relation between the droplets and hydrocarbon concentration, and relation between the change in concentration gradient of hydrocarbon with the time and the velocity of the swirl flow, and effect of non-luminous flame on the time of heat release rate raising period have been obtained. And from spatial distributions of hydrocarbon concentration, soot concentration, and local temperature in the combustion chamber at each time, the locational characteristics of soot generation are clarified. Further, effects of hydrocarbon and local temperature on soot generation have been considered.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
X